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Recap from last session

• Macroscopic kinetics  vs microscopic dynamics
• Elementary vs complex reactions
• Molecularity vs order of a reaction
• Rate equations vs 
• Integrated reaction rate laws (0th, 1st, 2nd)
• Arrhenius equation (& its useful plot!)

1



Chapter 2
Complex Reactions



2.1 Reversible Reactions

A
𝑘!
⇄
𝑘"!

B 

• Obtain two linear ODEs:

• # A
#$

= −𝑘! A + 𝑘"! B

• # B
#$

= 𝑘! A − 𝑘"! B

• Use extent of reaction: 𝑥 = A % − A = B − B % 
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e.g. ⇌  



• yields  #&
#$
= 𝑘1 A % − 𝑥 − 𝑘"! B % + 𝑥

                        = − 𝑘! + 𝑘"! 𝑥 + 𝑘1 A % − 𝑘"! B %

• Substitute
   to simplify to

 #&
#$
= −𝑘𝑥 + 𝑐

• ∫%
&! #&
"'&()

= ∫%
$ 𝑑𝑡 
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𝑘 𝑐



• − !
' ∫%

&! #&
&""#

= − !
'
ln

&!"
"
#

""#
= 𝑡 

• We find that 𝑥$ =
)
'
1 − 𝑒"'$    -What happens at late times?

• 𝑥eq = lim
$→+

𝑥$ =
)
'
=

'$ A %"'&$ B %
'$('&$

  

• Meaning   𝑥$ = 𝑥eq(1 − 𝑒"'$) 
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>0

𝑡

𝑥$
𝑥eq



• Over time, we reach the equilibrium value  𝑥eq
• And also equil. concentrations for A and B:
• A eq = A % − 𝑥eq and B eq = B % + 𝑥eq

• A = A eq + 𝑥eq𝑒"'$

• B = B eq − 𝑥eq𝑒"'$
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• Remember: reversible reaction, so detailed balance holds! So

• 𝑘! A eq = 𝑘"! B eq 

• and equilibrium constant:

 𝐾eq =
B eq
A eq

= #$
#&$
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2.2 Consecutive Reactions

A first order consecutive reaction with 2 steps: A
𝑘1
→
	

B	
𝑘2
→
	

C 

• E.g. radioactive decay: $%
%&$U → $&

%&$Np → $'
%&$Pu 

• ( A
()

= −𝑘! A  

• ( B
()

= 𝑘! A − 𝑘% B  

• ( C
()

= 𝑘% B  
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easiest one to solve:
A = A *𝑒"#$)



• ( B
()

= 𝑘! A − 𝑘% B  

• Insert solution for A = A *𝑒"#$)  

• ( B
()

= 𝑘! A *𝑒"#$) − 𝑘% B  

• Rearrange to ( B
()

+ 𝑘% B = 𝑘! A *𝑒"#$)  

  
                     an inhomogeneous linear ODE
…How to solve this?
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A
𝑘1
→
	

B	
𝑘2
→
	

C



• ( B
()

+ 𝑘% B = 𝑘! A *𝑒"#$)  

                     an inhomogeneous linear ODE
• General solution:
 = general solution of the homogeneous ODE
  + a particular solution of the inhomogeneous ODE

• For  the general solution of the homogeneous ODE we find

  ( B
()

+ 𝑘% B = 0 

• So,  B + = B +,*𝑒"#')  
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A
𝑘1
→
	

B	
𝑘2
→
	

C
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• ( B
()

+ 𝑘% B = 𝑘! A *𝑒"#$)  

                     an inhomogeneous linear ODE
• General solution:
 = general solution of the homogeneous ODE
  + a particular solution of the inhomogeneous ODE

• For  the particular solution of the inhom. ODE, we guess 
B - = B -,*	𝑒"#$)  Then substitute into inhom. ODE:

−𝑘! B -,*𝑒"#$) + 𝑘% B -,*𝑒"#$) = 𝑘! A *𝑒"#$)          à B -,* =
#$ A %
#'"#$
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• General solution:
 = general solution of the homogeneous ODE
  + a particular solution of the inhomogeneous ODE
• Add the general homogeneous and the particular inhomogeneous 

solutions 

• B = B +,*𝑒"#') +
#$ A %
#'"#$

𝑒"#$)  

• Using boundary condition: B * = C * = 0 we get

• B =
#$ A %
#'"#$

(𝑒"#$) − 𝑒"#')) 
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A
𝑘1
→
	

B	
𝑘2
→
	

C

1 2+



• And with A + B + C = A * we find
• C = A * − A − B

• C = A *(1 +
#$.&#'!"#'.&#$!

#'"#$
) 
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A
𝑘1
→
	

B	
𝑘2
→
	

C

[A]/[A]0

[B]/[A]0

[C]/[A]0
A !

𝒌𝟏 = 𝟏	 𝒌𝟐 = 𝟎. 𝟏

[A]/[A]0

[C]/[A]0

[B]/[A]0

C ≈ 𝐴 +(1 − 𝑒,-!.)
𝒌𝟏 = 𝟏	 𝒌𝟐 = 𝟏𝟎𝟎

for 𝒌𝟐 ≫ 𝒌𝟏
Two cases:

for 𝒌𝟏 ≫ 𝒌𝟐



2.3 Parallel Reactions
Case 1: First-order decay to different products
What are the rate laws for the components?
• 𝐴 = 𝐴 *	𝑒"(#(2#)))

•
( B t
()

= 𝑘4 𝐴 t = 𝑘4 𝐴 *	𝑒"(#(2#))) 							and with B 0 = C 0 = 0

• B t =
#(

#(2#)
𝐴 *	(1 − 𝑒" #(2#) ))	

• C t =
#)

#(2#)
𝐴 *	(1 − 𝑒" #(2#) ))	
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2.3 Parallel Reactions
Case 1: First-order decay to different products

Note: The branching ratio is constant over time:

   B.R. = 
B t
C t

= #(
#)
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2.3 Parallel Reactions
Case 2: First-order decay to the same product

Quiz: What are the integrated rate laws for all components?
In an exam, be able to also plot the concentrations over time.
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A brief note on AI to enhance your learning 
experience – a very useful tool
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2.4 Approximate Solutions
2.4.1 The Steady-State Approximation (SSA)

• Condition: intermediates A5  are only ever present in small 
concentrations

à time derivative of this intermediate is negligible compared to 
other time derivates, i.e.

    ( A*
()

≈ 0 

20

Careful, don’t set A5  itself to be =0! Why?



• Example 1 (we solved this already):

Case: assume 𝒌2 ≫ 𝒌1, so B reacts away faster than it is formed
à[B] is small, can apply steady-state condition:	 𝐵 6		

• ( 4 +
()

= 𝑘! A − 𝑘% 𝐵 6 = 0	

• 𝐵 6 =
#$
#'

A = #$
#'

A *	𝑒"#$)  and therefore

• C = A *(1 − 𝑒"#$))						same solution as before, slide 13! J

• C builds up as if B was not present and we simply had reaction A	
𝑘!
→
	
C	
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A
𝑘!
→
	
B	

𝑘%
→
	
C

!



• Example 1 (we solved this already):
with
Case: assume 𝒌2 ≫ 𝒌1
From previous slide:

C = A * 1 + #$.&#'!"#'.&#$!

#'"#$
≈ A *(1 − 𝑒"#$)) 

works equally well for inserting for B:

B =
#$ A %
#'"#$

𝑒"#$) − 𝑒"#') ≈ #$
#'

A *𝑒"#$)  
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A
𝑘1
→
	

B	
𝑘2
→
	

C

same results as 
without having 
made the SSA 
before, for this 
Case 1



• Example 1 (we solved this already):
with
Case: assume 𝒌2 ≫ 𝒌1
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Still overall a very good approximation



• Example 2: Consecutive reaction with
                            reversible first step

• e.g., in enzyme kinetics or therm. activated reactions
• Rate equations:

• ( A
()

= −𝑘! A + 𝑘"! B

• ( B
()

= 𝑘! A − 𝑘"! B − 𝑘% B

• ( C
()

= 𝑘% B
• Could solve these analytically, but let’s use SSA!
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A
𝑘!
⇄
𝑘"!

B
𝑘%
→
	
C 



• ( B
()

= 𝑘! A − 𝑘"! B − 𝑘% B  

• in SSA, B remains very small, so

•
( B S
()

= 𝑘! A − (𝑘"! + 𝑘%) B S = 0 

• B S =
#$

#&$2#'
A  

• For applying this SSA, we need to assume: 𝒌𝟏 ≪ 𝒌"𝟏 + 𝒌𝟐 
• Putting this solution in for the A and C rate equations, we find

• ( A
()

= −𝑘! A + 𝑘"! B S = −𝑘! +
#$#&$
#&$2#'

A = − #$#'
#&$2#'

A  

• ( C
()

= 𝑘% B S =
#$#'

#&$2#'
A
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A
𝑘!
⇄
𝑘"!

B
𝑘%
→
	
C 

!



• These results are like those gained for a much simpler 
reaction, namely a simple first-order one:

•            A
𝑘.77
→
	

C             with 𝑘.77 =
#$#'

#&$2#'
 

• Let’s distinguish further between 2 cases within our  initial 
assumption of 𝑘! ≪ 𝑘"! + 𝑘% :

Case 1: 𝒌𝟐 ≫ 𝒌"𝟏  (i.e. all B formed reacts straight to C)

• then 𝑘.77 ≈ 𝑘! and the reaction behaves as if A
𝑘!
→
	

C.

• A
𝑘!
→
	
B then is bottleneck of reaction, i.e. the first step is the rate-

limiting, rate-determining, or rate-controlling step. 27

A
𝑘!
⇄
𝑘"!

B
𝑘%
→
	
C 



Case 2: Let’s assume the second step B
𝑘%
→
	

C is rate-limiting!

with the condition 𝒌"𝟏 ≫ 𝒌𝟐 
Meaning:

• 𝑘.77 =
#$#'
#&$

= 𝐾	𝑘%    with 𝐾 = #$
#&$

 

• Here, second step is so slow that A and B are in a quasi-equilibrium: 

 A
𝑘!
⇄
𝑘"!

B			with equilibrium const.  𝐾 = B
A = #$

#&$
	

• This quasi-equilibrium is called pre-equilibrium

• For C we find ( C
()

= 𝑘.77 A = #$#'
#&$

A = 𝐾𝑘% A  
28

A
𝑘!
⇄
𝑘"!

B
𝑘%
→
	
C 
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B
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C	rate-limiting, 𝒌"𝟏 ≫ 𝒌𝟐 
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2.4.2 The Pseudo-First-Order Method

• Goal: do clever experiments to simplify analysis of complex 
reactions
• How? Flooding of the reaction with one reactant at a time

• Example: The competing reactions A! + A%
𝑘!
→
	

products   &

       A! + A&
𝑘%
→
	

products

• Second order rate equations: ( A'
()

= −𝑘! A! A%

     ( A,
()

= −𝑘% A! A&
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• Trick: supply A!  in large excess in your reaction
• This results in  A! ≫ A%  and A! ≫ A&
• What happens to A!  over time?
• It stays essentially constant: A! ≈ const. 
• Meaning effective rate constants can be used for

• ( A'
()

= −𝑘! A! A% ≈ −𝜅! A%

• ( A,
()

= −𝑘% A! A& ≈ −𝜅% A&
• reduced the complex problem to simple pseudo-1st-order ones! J
• Then just measure the monoexp. decays to get the 𝜅’s, and from 

them calculate the 𝑘’s

A! + A%
𝑘!
→
	

products   &

A! + A&
𝑘%
→
	

products



2.5 Exact Analytical Solution Methods
2.5.1 Matrix Method for Coupled Linear ODEs
2.5.2 LaPlace Method for Coupled Linear ODEs
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2.6 Numerical Solution Methods
2.6.1 The Stochastic Method
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compared to our deterministic
approach so far (large numbers)

becomes important once number of 
collision partners small (e.g. in a cell)


