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Recap from last session

* Macroscopic kinetics vs microscopic dynamics
* Elementary vs complex reactions

* Molecularity vs order of a reaction

* Rate equations vs

* Integrated reaction rate laws (0", 1st, 2nd)

* Arrhenius equation (& its useful plot!)



Chapter 2

Complex Reactions



2.1 Reversible Reactions

k1 o H <
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e Obtain two linear ODEs:
d[A
+ A8 — kAl + k_y[B]
. d[B]

] = ey [A] — k4 [B]

» Use extent of reaction: x = [A], — [A] = |B] — |B],



- yields == = kq ([Al — x) — k_; ([B] + x)

— _.(kl + k_.l)x + l(kl[A]o — k—1[B]q)
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to simplify to
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* Over time, we reach the equilibrium value xeq

* And also equil. concentrations for A and B:
* [Aleq = [Alo — xeq and [Bleq = [Blo + xeq
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* Remember: reversible reaction, so detailed balance holds! So

* k1lAleq = k-1[Bleq

* and equilibrium constant:

concentration

P [B]eq _ ki
€q — [A]eq T k4




2.2 Consecutive Reactions

ke ko
A first order consecutive reaction with 2 steps: A—- B ->C

* E.g. radioactive decay: %3,U — 432Np - %37Pu

JalA] _
= —y[A] —
easiest one to solve:

dc[z]?] = kq[A] =k [B] [A] = [A] e %1t




k1 ko
A- B ->C
2l = kq[A] — k,|B]

TN

* Insert solution for [A] = [A]e 1t

d[B]
dt

= ky[Alpe 1" — k,[B]

Bl |k [B] = k,[A] e—K1t

* Rearrange to e

an inhomogeneous linear ODE
...How to solve this?



k1 ko

A- B ->C
B
) dc[lt] + k,[B] = ky[A]ge ¥t
an inhomogeneous linear ODE
* General solution:
1

= general solution of the homogeneous ODE
+ a particular solution of the inhomogeneous ODE

1 * For the general solution of the homogeneous ODE we find

a[B] _
=4k, [B] = 0

* So, [B]r, = [Blnoe ™"
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k1 ko

A- B ->C
B
) dc[lt] + k,[B] = ky[A]ge ¥t
an inhomogeneous linear ODE
* General solution:
1

= general solution of the homogeneous ODE

+ a particular solution of the inhomogeneous ODE 2
2 * For the particular solution of the inhom. ODE, we guess
[Bl,, = [Bl, 0 e ¥1f Then substitute into inhom. ODE:
ka[A],

_kl [B]p,Oe_klt + kz [B]p’oe_klt = kl [A]Oe_klt



k1 ko

« General solution: A- B -C

= general solution of the homogeneous ODE
+ a particular solution of the inhomogeneous ODE

* Add the general homogeneous and the particular inhomogeneous
solutions 1 + 2

kq[A
« [B] = [B], ge—"2t + 120 -yt
’ ky—kq

 Using boundary condition: [B], = [C], = 0 we get

o [B] — %Ak]f(e—klt _ e—kzt)
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k1 ko

* And with [A] + [B] + [C] = [A], we find

A- B ->C
* [C] =[A]o — [A] = [B]
k —kzt_k —kqt
- [C] = [Alp(1 + == = —)
ky—k1
Two cases: e
for k1 > kz for kz > k1 [C] ~ [A]O(l —e )
[A]]O k1 =1 kz =0.1 kl =1 kz =100 [C]/[A]o
[CI/IA], ‘ '
2 [BI/[A], 2
5 S
§ 3 [AI/TA],
0 0

Time



2.3 Parallel Reactions .

Case 1: First-order decay to different products A /
What are the rate laws for the components? k\‘

* [A] = [A]p e~ ks tkor

d|B
. [dt]t = kg[A]t = kg[A], e kBTkAt  and with [B]g = [C]g =
o [R]. = kB AT _ ,—(kp+kc)t

Blt et ko) Alp (1 — e V"BTECH)
 [Cle = —5—[A], (1 — e~ (ko)
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2.3 Parallel Reactions

Case 1: First-order decay to different products }v B
A
Note: The branching ratio is constant over time: }CA C
B
BR. = Ble _ ks _
[C]t kc () A B
.|§ ....................
=
S C
-
)
O |

time
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2.3 Parallel Reactions

Case 2: First-order decay to the same product
A {‘

B “k

B

Quiz: What are the integrated rate laws for all components?
In an exam, be able to also plot the concentrations over time.
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A brief note on Al to enhance your learning
experience - a very useful tool

15:36 N\ ! D @)

A k = ChatGPT : @

What are the integrated rate
laws for the individual
B k components in a parallel reaction
B of A reacting to C and B reacting
oR@R

\ C | am studying reaction kinetics.
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- ChatGPT > ChatGPT > ChatGPT > ChatGPT > 4

| am studying reaction kinetics.
What are the integrated rate

laws for the individual
components in a parallel reaction
of A reacting to C and B reacting
to C?

1. Integrated Rate Law for 4

Assuming the reaction of A — C'is first-
order with respect to A:

where [4]o is the initial concentration of
A.

2. Integrated Rate Law for B

Similarly, assuming the reaction of
B — Cis first-order with respect to B:

Exponentiating both sides gives:
[B] = [Bloe™"

where [Bly is the initial concentration of
B.

@ Ina parallel reaction, two different Summary of Integrated Rate
reactants, A and B, independently react To find the integrated rate law for A, we dB] k(B Laws
to form a common product C. The separate the variables and integrate: dE 2

reactions can be represented as follows:

\[ /% _ _/k1 dt A?ain, we. separate the variables and - For reactant A: ] = [Alpe™*

A \xrightarrow{k_1} C integrate: . For reactant B: ] = [Blpe %!
g\xrightarrow{k e This integration yields: /% = — / ko dt ICntegrated Rate Law for Product
N - In[A] = —k, ¢ + In[A],

where k1 and k2 are the rate constants
for the respective reactions.

To derive the integrated rate laws for the
individual components A and B in this
parallel reaction, we consider the
kinetics of each reaction separately.

N2

1 Intanratad Data |l aw far 1

U]

Exponentiating both sides gives:

A.

This gives:
In[B] = —kyt + In[B],
Exponentiating both sides gives:

[B] = [Blye ™!
2

e
-\

The formation of product C in a parallel
reaction is the sum of the contributions
from both reactions:

d[C]

T ki[A] + ky[B]

Substitute the in* +ated rate laws for
[A] and [BI:

4 o
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15:36 N\ W T @)

ChatGPT >

Integrated Rate Law for Product
C

The formation of product C in a parallel

reaction is the sum of the contributions
from both reactions:

el '
e ki[A] + ky[B]

Substitute the integrated rate laws for
[A] and [Bl:

d[C] _. &
T ky[Alpe™ 1t + ky[Blye ™!

To find the integrated form, integrate
with respect to time:

C = [A]p(1 — e7?) + [B]y(1 — e~H2t)

Summary of the Integrated Rate
Law for Product C

C = [A]y(1 —e7M?) + [B]y(1 — e*f)
3

)
=)

R

15:36 N\

ChatGPT >

from both reactions:

dc) _ y
F i ki[A] + ko[ B

Substitute the integrated rate laws for
[A] and [B:

d ] k
c[i_f] = ky[A]ge ™" + k,[B]ye ™!

To find the integrated form, integrate
with respect to time:

C=[4]p(1— e_I"") + [B]y(1 — (3_1"'.”)

Summary of the Integrated Rate
Law for Product C

C = [A]p(1 — e7?) + [B]y(1 — e7*2t)

These equations describe the
concentrations of A, B, and C as
functions of time in a parallel reaction
system.

i)

E~2
0 T @)
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15:37 N\

ChatGPT > @G

Concentrations of A, B, and C over Time in a Parallel Reaction

(8KY)
(CKY)

\centration (mol/L)

] 5 10 15 20 25 30
Time (s)

The plot above shows the
concentrations of A, B, and C over time
in a parallel reaction system where
A—Cand B— C.

- A and B decrease exponentially over
time as they are consumed in their
respective reactions.

. Cincreases as the common product is
formed from both A and B. Initially,
the increase in [C] is rapid as both
reactions contribute to its formation.
As A and B deplete, the rate of
increase in [C] slows down.

The shape of these curves is
determined by the rate constants *1 and
ks, as well as the initial concentrations
of Aand B. >-)

)
)
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2.4 Approximate Solutions
2.4.1 The Steady-State Approximation (SSA)

* Condition: intermediates A; are only ever present in small
concentrations

- time derivative of this intermediate is negligible compared to
other time derivates, I.e.

d[A
dt

~ ()

Careful, don’t set |A;] itself to be =0! Why?

20



k k
* Example 1 (we solved this already): A_l) B _f(;

Case: assume ko > k4, so B reacts away faster than it is formed
—>[B] is small, can apply steady-state condition: |[B]s

d[B] -
. [B]s = 2 [A] = £2[A], e %1t  and therefore
ko ko

* [C] = [A]o(1 — e *1t)  same solution as before, slide 13! ©
k1
* C builds up as if B was not present and we simply had reaction A —» C

21



ky ko
« Example 1 (we solved this already): A—- B —>C

with
Case: assume ko > k1
From previous slide:

[C] = [Alo (1 +=¢

—kzt_kze—klt
ko—kq

)~ Al —eh

k 1L L for i ing for B same results as
works equally well for inserting for B: without having
_ kl[A]o

[B] = ———0 (e k1t — gmk2t) x L [A] e Hat made the SSA
kz_kl kz .
before, for this
Case 1
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k1 ko
« Example 1 (we solved this already): A—- B —>C
with

Case:assume ko > k
27 (Blo=[Clo=0. k; = 1.0, k- = 10

LOf YAl
= 08!
© f
Exact solution (from before) § 06
compared to S :
04-
Steady-state approximation % - AVAL By,
S 02 B]./[Al,
pretty good agreement! :) 00+ —F7




08
06

...except

concentration

or this O 4 ‘ -

carytime [ \AVIAL - ByA)
s 002 Bl/AL
Pri\;ehrizre\... 00 —T—

Still overall a very good approximation



* Example 2: Consecutive reaction with A2 BoC

reversible first step k_4

* e.4.,in enzyme kinetics or therm. activated reactions

* Rate equations:

d[A]
dt
a[B
dt
. 4lC]

dt

ki[A]

1L

ka[B

ki[A] + k_4[B]

— k_4[B] — k,[B]

* Could solve these analytically, but let’s use SSA!
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d[B A2 B-C
Ak, [A] — ke, [B] - Ky [B] ‘.
* in SSA, B remains very small, so

d[Blg !
° = kqi[A] — (k-1 + kz)[B]S =0

dt
- [Blg = ——[A]

—1+k>-
* For applying this SSA, we need to assume: k; K k_; + k,

* Putting this solution in for the A and C rate equations, we find

A = k(A + ke [Blg = (ks + 22 [A] = -
C 1K>
) dc[lt] = ka[Blg = k::{—kz [A] /

Kerr
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ki k,
- These results are like those gained for a much simpler A & B—-C

reaction, namely a simple first-order one: k_q
kerr
. : _ kiks
A - C with keff — k11K,

* Let’s distinguish further between 2 cases within our initial
assumptionofk; K k_; + k, :

Case 1: k, > k_4 (i.e. all Bformed reacts straight to C)
kq
* then ks = k; and the reaction behaves as if A—C.

Ky
* A— B then 1s bottleneck of reaction, i.e. the first step 1s the rate-

limiting, rate-determining, or rate-controlling step. 27



k> ki k
Case 2: Let’s assume the second step B— C is rate-limiting! 5 (:} B—fC

k_
with the condition k_; > k, .
Meaning:
. klkz _ . _ kl

¢ keff = k- —Kkz with K _k_—1
* Here, seconcll{step Is so slow that A and B are in a quasi-equilibrium:

1

A 2 B with equilibrium const. K = 1Bl _
I [A] ~ k_
-1

* This quasi-equilibrium is called pre-equilibrium

* For C we find —= alC] _
dt

= kegs[A] = 22 [A] = Ky [A]
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k1 kZ

A2 B->C
Case 1: Case 2: k_1
k1 kZ
A — B rate-limiting, k, > k_4 B — C rate-limiting, k_; > k,
k1—02 k1—01 k2—19 k1:().2,k_1:1.9,k2:O.1
T — f 1Oy
: C: :
§ 067 steady-state concentrations § 067
= j = I
8 04+ without approximation 8 04:-
S I = I
o I Q I
02 : © 02
o0 . T ] o0~ .
0 5 10 15 20 25 0 20 40 60 80 100
4 4
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2.4.2 The Pseudo-First-Order Method

* Goal: do clever experiments to simplify analysis of complex
reactions

* How? Flooding of the reaction with one reactant at a time
k1
* Example: The competing reactions A; + A, - products &

K>
A, + A; > products

d[A;]
dt
d[As]
dt

* Second order rate equations: = —k,|A{]|A,

= —k, :A1: :A3:



k4
» Trick: supply [A;] in large excess in your reaction Ay + Ay —>products &
* Thisresultsin [A{] > [A,] and [A{] > [A5] k,
* What happens to [A,] over time? A; + Az - products
* |t stays essentially constant: [A;] = const.

* Meaning effective rate constants can be used for

* d[cﬁZ] = —k.[A1][As] = —K4[A,
* d[zg] = —k,[A;][Az] = —K,[Az]

* reduced the complex problem to simple pseudo-1st-order ones! ©

* Then just measure the monoexp. decays to get the k’s, and from
them calculate the k’s
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2.5 Exact Analytical Solution Methods

2.5.1 Matrix Method for Coupled Linear ODEs
2.5.2 LaPlace Method for Coupled Linear ODEs

32



Concentration

2.6 Numerical Solution Methods

2.6.1 The Stochastic Method

120

_ (A] = 100
100 _
80 [B]
a0 —" “ ok
40 .,..-;:: (A)
20 :
0 1 |
0 1 2
Time

becomes important once number of
collision partners small (e.g. in a cell)

Concentration

12,000

10,000 -
8,000 —
6,000

4,000

[A], = 10,000

TP T I T T YR T

Time

—

compared to our deterministic
approach so far (large numbers)
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